Jdi na obsah Jdi na menu
 


SATURN PLANETA POKRAČOVÁNÍ

Pozorování

[editovat] Historie pozorování

Saturn je snadno pozorovatelný pouhým okem. Lidé jej proto znali již od pravěku.[44] První historicky doložené pozorování této planety pochází do období okolo roku 650 př. n. l. z oblasti Mezopotámie. V dochovaném textu je zmínka o zákrytu planety Měsícem.[45] V nejstarších modelech nebeské sféry, které byly geocentrické, byl nejvzdálenější planetou od Země a obíhal ji mezi oběžnou dráhou Jupiteru a nejvzdálenější sférou hvězd.[46]

Galileovy kresby Saturnu. Galileo původně považoval prstence za velké měsíce.

V roce 1610 se pozorováním Saturnu zabýval Galileo Galilei. Kvůli nedokonalé optice použitých dalekohledů, která umožňovala pouze 32násobné zvětšení, neodhalil podstatu Saturnových prstenců a pokládal je za dvě samostatná tělesa, doprovázející vlastní planetu, a považoval tedy Saturna za trojplanetu. Dalšími pozorováními však zjistil, že tyto oběžnice po stranách planety pravidelně mizí, což bylo způsobeno měnícím se sklonem prstenců vůči Slunci a Zemi. Toto zjištění ale nebyl Galileo do své smrti schopen vysvětlit.[47] Teprve v roce 1656 přinesl správné vysvětlení pozorovaných jevů holandský astronom, matematik a fyzik Christiaan Huygens, který jako první prohlásil, že Saturn je obklopen kruhovým prstencem. Jeho závěr byl založen na nových pozorování planety započatých v roce 1655 pomocí dalekohledu s 50násobným zvětšením. V dubnu téhož roku pak objevil také největší Saturnův měsíc Titan a určil poměrně přesně jeho oběžnou dobu.

V 70. a 80. letech 17. století byly objeveny další čtyři měsíce Saturnu, a to Japetus, Rhea, Tethys a Dione. Skutečnost, že Saturnův prstenec se ve skutečnosti skládá z více vzájemně oddělených prstenců, zjistil jako první francouzský astronom Giovanni Domenico Cassini v roce 1675. Jím objevená mezera mezi prstenci se dodnes označuje termínem Cassiniho dělení na jeho počest.[48]

V roce 1789 změřil William Herschel zploštění planety.[49] Poměr rovníkového průměru k polárnímu odhadl na 11:10. Od konce 18. století již technika umožňovala rozeznávat bílé skvrny v atmosféře planety, kterých si poprvé v roce 1796 všimli Johann Hieronymus Schröter a jeho asistent Karl Ludwig Harding na observatoři v blízkosti Brém. Skvrny byly později příležitostně pozorovány i v 19. a 20. století (a to v letech 1876, 1903, 1930, 1960 a 1990). Z novějších pozorování vyplývá, že se objevují přibližně každých 27 až 30 let, což koresponduje s oběžnou dráhou Saturnu kolem Slunce, která je přibližně 29,5 roku.[50]

19. století také prokázal J. E. Keeler, že jednotlivé prstence nejsou jednolité, ale skládají se z nesmírného počtu malých částic.[51]

Pohled na prstence planety vrhající stín

[editovat] Současné pozorování

Saturn bývá na noční obloze velmi dobře pozorovatelný i pouhým okem, jelikož je téměř tak jasný jako Jupiter a má výraznou žlutou barvu. Jeho zdánlivá hvězdná velikost se pohybuje v závislosti na konstelaci od 1,4 do –0,4 magnitudy, což jsou hodnoty, kterých dosahují nejjasnější hvězdy. Na rozdíl od hvězd ale Saturn jako jiné planety nebliká, jeho světlo je klidné. Jeho jasnost vůči pozorovateli na Zemi ovlivňuje také okamžitý sklon prstenců vůči Zemi.[15] Saturn se od ekliptiky nikdy nevzdaluje více než o 2,5°, z čehož vyplývá, že na 50. rovnoběžce při horní kulminaci nikdy nemůže vystoupat výše než na 66° a klesnout méně než 14° pod obzor. Považuje se za nejvzdálenější planetu, kterou lze pozorovat pouhým okem. Jasnost Uranu se však pohybuje na hranici pozorovatelnosti a za ideálních podmínek je vidět i on, ačkoli je dále než Saturn. Prstence Saturnu nejsou volným okem viditelné, zobrazí se však již při pozorování menším dalekohledem, pokud jsou příhodně orientované vůči Zemi. Společně se Saturnem je možné dalekohledem pozorovat i jeho největší měsíc Titan. Dobře viditelný je při vhodném sklonu i stín prstenců na planetě. Na samotném povrchu Saturnu je možno pozorovat atmosférické pásy a vzácně bílé jasné skvrny, které byly pozorovatelné naposledy v roce 1990.[52]

Planeta se pohybuje po obloze nejpomaleji ze všech planet viditelných pouhým okem, což je důsledek třetího Keplerova zákona. Jako všechny ostatní planety tak i Saturn někdy při svém pohybu na hvězdném pozadí „zpomaluje“, „zastaví“ a případně se pohybuje i nazpět. Tyto nerovnoměrnosti v pohybu jsou způsobeny sčítáním pohybu Země a Saturnova téměř rovnoměrného oběhu okolo Slunce. V roce 2008 se planeta nacházela v souhvězdí Lva a začátkem září 2009 se přesune do souhvězdí Panny. Průměrně se v jednom souhvězdí zvěrokruhu zdržuje více než 2 roky. Pozorovatelný je každý rok vždy v tom období, ve kterém je viditelná i oblast souhvězdí, ve kterém se nachází.

Vyjma amatérských a profesionálních pozorování ze Země je Saturn také předmětem výzkumu Hubbleova vesmírného dalekohledu z oběžné dráhy Země. Ten pozoruje hlavně atmosférické změny, ale i polární záře v oblasti pólů. Dalekohled objevil také několik nových malých měsíců a pomohl určit maximální tloušťku Saturnových prstenců. Při zákrytu hvězdy GSCC5249-01240 během 20. až 21. listopadu 1995 se mu podařilo určit podrobnější strukturu prstenců.[53] Při maximálním sklonu prstenců v roce 2003 pořídila kamera Wide Field Planetary Camera 2 s použitím 30 snímků v širokém pásmu vlnových délek snímky Saturnu, čímž dosáhla doposud nejlepšího spektrálního pokrytí planety v historii jejího pozorování.[54] Tyto snímky umožnily vědcům lépe studovat dynamické procesy odehrávající se v atmosféře a vytvořit modely sezónního chování atmosféry.

Z pozemských observatoří pozorují Saturn například Evropská jižní observatoř a observatoř na Mauna Kea, které v letech 2000 a 2003 objevily několik malých nepravidelných měsíců.[32]

[editovat] Kosmické sondy

Saturn ze sondy Voyager 1

Současná astronomie čerpá většinu detailních znalostí o Saturnu ze snímků, pořízených kosmickými sondami. První z nich byl Pioneer 11, který prolétl v blízkosti Saturnu roku 1979. K planetě dorazil po čtyř a půl roční cestě meziplanetárním prostorem. Studium planety a jejího okolí začalo 2. srpna 1979, poté sonda provedla riskantní, ale úspěšný manévr, během něhož prolétla 1. září 1979 rovinou Saturnových prstenců. Během průletu hrozila srážka sondy a hmoty prstenců. Nejvíce se sonda Saturnu přiblížila na 21 400 km nad oblast mraků. Výzkum planety ukončila 15. září a pokračovala v letu do vnějších oblastí sluneční soustavy.[55]

Dalšími průzkumníky Saturnu byly sondy Voyager 1 a Voyager 2, které snímkovaly Saturn v letech 1980 a 1981. Největšího přiblížení Voyager 1 dosáhl 13. listopadu 1980, ale jeho přístroje zkoumaly planetu již tři měsíce před tím. Během přeletu bylo pořízeno množství fotografií, které přinesly řadu nových poznatků o planetě. Podařilo se rovněž získat snímky měsíců Mimas, Tethys, Dione, Enceladus, Rhea a Titan. Okolo Titanu pak sonda 12. listopadu 1980 proletěla ve vzdálenosti pouhých 6500 km, což umožnilo nasbírat základní údaje o atmosféře měsíce a jeho teplotě.[56]

O rok později se k Saturnu přiblížila sonda Voyager 2, které se nejblíže dostala 25. srpna 1981. Během průletu začala sonda zkoumat horní vrstvy atmosféry planety za pomoci radaru. Radarové měření přineslo poznatky o teplotě a hustotě atmosféry, například se zjistilo, že v nejvyšších oblastech atmosféry Saturnu je tlak okolo 7 kPa a teplota –203 °C, zatímco v nejnižších zkoumaných oblastech byl tlaku až 120 kPa a teplota –130 °C. Severní pól byl o 10 °C chladnější než jižní, což bylo vysvětleno jako výsledek sezónních jevů. Během průletu sondy se podařilo na Zemi odeslat okolo 16 000 fotografií.

Umělecká představa sondy Cassini-Huygens při průletu kolem planety

V roce 1997 odstartovala z kosmodromu na mysu Canaveral raketa Titan, nesoucí na palubě planetární sondu Cassini-Huygens, která jako první sonda v historii měla za úkol být navedena na oběžnou dráhu kolem Saturnu. K tomu došlo 1. července 2004 a 25. prosince se od sondy oddělil přistávací modul Huygens, který byl navržen a vyroben Evropskou kosmickou agenturou pro přistání na měsíci Titan. Po oddělení začal modul samostatnou třítýdenní cestu a 14. ledna 2005 úspěšně přistál na povrchu Titanu. Během přistání sonda Cassini sloužila jako translační stanice pro signál vysílaný z přistávacího modulu na Zemi. Modul přistál na zmrzlém povrchu tvořeném směsí křemičitanových hornin a tuhého metanu. Nad očekávání dobře přežil přistávací manévr a na povrchu fungoval více než 4 hodiny. Spojení se sondou Cassini bylo ale ztraceno už po dvou hodinách, protože sonda zmizela za horizontem. Sonda Cassini pokračuje z oběžné dráhy ve výzkumu Saturnu a jeho měsíců.

[editovat] Možnost života

Saturn patří mezi plynné obry, takže nemá pevný povrch jako terestrické planety. U těchto planet se předpokládá, že případný život by mohl teoreticky vznikat pouze v atmosféře v oblastech, kde se nacházejí kapičky vody a dostatek slunečního záření. Objevily se spekulace, ve kterých se tvrdilo, že by v takovém prostředí dokázaly žít i vícebuněčné organismy. Na Zemi se však zatím nenašly žádné organismy, které by byly schopny žít výhradně v mracích, dokonce ani na místech, kde jsou mraky přítomny téměř neustále. Analogicky můžeme předpokládat podobnou situaci pro všechny tělesa sluneční soustavy s atmosférou a tedy i pro Saturn.[57] Naopak za možné kandidáty na mimozemský život v Saturnově rodině se považují měsíce Titan a Enceladus. Složení atmosféry Titanu připomíná složení atmosféry Země v raném stádiu vzniku. Uvažuje se též o možnosti výskytu jednobuněčných organismů, které by zde mohly přežívat.[58] Po přistání sondy Huygens však Fransois Raulin, jeden z expertů projektu prohlásil, že život na Titanu je velmi nepravděpodobný z důvodu nepřítomnosti vody na povrchu měsíce.[59]

Měsíc Enceladus vědce překvapil přítomností vody v kapalném skupenství, kterou chrlí gejzíry na jeho povrchu.[60] Tyto podmínky by mohly dovolovat existenci primitivního života.

[editovat] Saturn v kultuře

Zobrazení boha Saturna na reliéfu starodávného hradu Edzell Castle ve Skotsku.

[editovat] Jméno planety

Saturnus, po kterém je planeta pojmenována, byl starý římský bůh rolnictví, který se později ztotožňoval s řeckým Kronem, bohem času. Na rozdíl od Krona, který pro požírání vlastních dětí nebyl u starověkých Řeků příliš oblíben, měl Saturnus u Římanů velkou vážnost a úctu. Podle mýtu naučil lidi obdělávat půdu, pěstovat rostliny a stavět obydlí. O době jeho údajného panování se hovořilo jako o „zlatém věku lidstva“ a na památku jeho vlády se konaly slavnosti zvané saturnálie. V době těchto slavností dostávali otroci na krátký čas svobodu, protože ve zlatém věku nebylo pánů a ani otroků. Saturnovi se po ztotožnění s Kronem začaly připisovat Kronovy děti, mezi nimi například i Zeus, Římany nazývaný Jupiter, který ho nakonec svrhl z trůnu.[61] V indické mytologii Saturn ztělesňuje bůh Šani.[62]

[editovat] Astrologie

astrologii je Saturn pokládán za nepříznivou planetu kvůli tomu, že jeho pohyb je nejpomalejší ze všech planet tradiční astrologie. Symbolizuje formování a jistotu, zákony času a prostoru, strukturu, pořádek, pravidla, hranice, starobu, nepřízeň a smrt.[63] Jako kladné vlastnosti se mu připisuje stálost, praktičnost, hospodárnost, vytrvalost a systematičnost, k nepříznivým patří chlad, izolace, nedůvěra, pesimismus, frustrace a deprese. Klasická astrologie se na něho dívá jako na „otce času“, protože lidský život je údajně po třech obězích této planety zvěrokruhem naplněn. Současně je považován za životního učitele a symbol otce, proto je též symbolem zkušenosti a zodpovědnosti.[63]

[editovat] Sci-fi

Saturn se stal podobně jako další planety sluneční soustavy námětem některých sci-fi knížek. Často se vyjma Saturnu objevuje děj situovaný na jeho měsíc Titan, který má hustou atmosféru a jeho povrch je tvořený uhlovodíky. Z tohoto důvodu se často měsíc popisuje jako „čerpací stanice“ pro budoucí kosmické lety či jako surovinová základna pro dobývání vzdálených částí sluneční soustavy. Saturn se do literatury zapisuje například v díle bratrů Strugackých v roce 1962, kteří publikovali svoji knihu Tachmasib letí k Saturnu.[64] Další knihou, ve které je oblast okolo Saturna hlavním motivem, je román Arthura C. Clarka 2001: Vesmírná odysea. Příběh vypráví o lidské výpravě k Saturnově měsíci Japetusu, u kterého by se měl nacházet tajemný černý monolit. Měsíc Titan je například zmiňován v knize českého autora Jiřího Kulhánka Stroncium.[65]

Vyjma literárního zpracování se Saturn stává i námětem filmu Saturn 3, který vypráví příběh o malé vědecké stanici na povrchu měsíce Titan, kde dvojice vědců se dostává do kontaktu s další osobou a jeho robotem.[66]

 
 

 


Archiv

Kalendář
<< září / 2019 >>


Statistiky

Online: 1
Celkem: 7977
Měsíc: 199
Den: 5